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J.  Phys. A: Math. Gen. 18 (1985) 1361-1378. Printed in Great Britain 

Classical billiards in magnetic fields 

M Robnik and M V Berry 
H H Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 ITL, U K  

Received 29 November 1984 

Abstract. A particle moves in circular arcs with Larmor radius R between specular 
reflections at the smooth convex boundary of a planar region. The dynamics depends on 
the value of R in relation to the extreme curvature radii p , , ,  and pmax and the radius R* 
of the largest circle that can be inscribed in the boundary. For R < R* some orbits are 
complete Larmor circles and constitute an integrable component of the motion; all other 
orbits bounce repeatedly. For pm,. < R < pmax there are ‘flyaway intervals’ on the boundary 
for which glancing orbits are a powerful source of chaos in the map (on the phase cylinder) 
relating successive bounces; this type of chaos is a characteristic feature of magnetic 
billiards. For sufficiently large R the simplest closed orbits consist of two arcs associated 
with diameters of the boundary; their existence and stability can be determined. In several 
regimes where motion consists of short skips between nearby boundary points (including 
the strong-field case R --f O), an explicit adiabatic invariant can be found which gives an 
excellent approximation to the exact invariant curves in these regimes. Computations for 
a magnetic billiard with elliptic boundary illustrate the theory. 

1. Introduction 

A classical particle (‘billiard ball’) with mass m and charge q moves with speed v in 
a plane region with perfectly reflecting smooth convex boundary; a uniform constant 
magnetic field with strength B is directed perpendicular to the plane. The resulting 
orbits consist of a series of arcs of circles with the Larmor radius R = mu/ qB, connected 
by specular reflection at the boundary; if R is small enough, some orbits form complete 
circles entirely inside the boundary. Our purpose here is to investigate the geometry 
of these orbits and in particular to discover how their regularity or chaos depends on 
R for a given boundary. This work is thus complementary to conventional classical 
billiards, where there is no field, so that R = 00 (straight line segments), but where the 
dependence of orbits on the shape of the boundary is considered (for an elementary 
review see Berry (1981)). 

There are several reasons for studying classical magnetic billiards. Ours is as a 
prelude to an investigation of the quantum mechanics of the corresponding systems, 
motivated by the fact that magnetic fields break time-reversal symmetry (see appendix 
2) and should therefore give rise to new phenomena in the distribution of level spacings 
(Berry 1984). Another reason is that magnetic billiards are primitive models for more 
general sorts of bound systems (such as atoms) in magnetic fields (Ruderman 1975), 
whose orbits might be easier to understand following our analysis. Furthermore, 
ergodic properties of magnetic billiards might help in understanding the statistical 
mechanics of diamagnetism (Peierls 1979). Finally, the motion of charged particles 
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1362 M Robnik and M V Berry 

magnetically skipping along a wall (boundary between two magnetic domains) is a 
problem frequently occurring in astrophysical contexts (Drury 1983). 

The central feature of magnetic billiards is that the motion depends on the value 
of R in relation to the radii of curvature of the boundary. This gives rise to a series 
of curvature regimes which will be described in $ 2 ;  we will emphasise the emergence 
of chaos associated with glancing trajectories. For a given R the phase space is 
dominated by the shortest closed orbits ; these are particularly important if they consist 
of just two bounces and  the existence and stability of such orbits are studied in 5 3. 
In several limiting regimes, including the strong-field limit R + 0, motion consists of 
‘short skips’, meaning that the distance between successive bounces is small. For such 
cases, a surprisingly accurate adiabatic invariant will be derived in § 4; this shows that 
motion becomes more nearly integrable as R + 0. When applied to billiards without 
magnetic field ( R  + CO) it yields as a by-product an  analytic description of the boundary- 
hugging orbits whose existence was proved by Lazutkin (1973) (see also Sinai 1976). 
Finally, in § 5, we illustrate the preceding theory with numerical calculations for elliptic 
boundaries, for which the zero-field motion is integrable and the magnetic motion not. 

We wish to emphasise that this paper is restricted to magnetic billiards with 
boundaries that are sufficiently smooth (e.g. analytic). For boundaries with discon- 
tinuities of slope (e.g. polygons) or curvature (e.g. the stadium), our  arguments d o  not 
apply, and  indeed exploratory computations reveal rather different behaviour, on which 
we plan to report in a separate paper. 

2. Curvature regimes 

We use the notation illustrated in figure 1. Orbits are arcs of circles with radius R, 
and will be considered without loss of generality to gyrate clockwise. Points where 
orbits hit the boundary are labelled by arc length s, reckoned anticlockwise (‘forwards’) 
thus O s  s < 2’ where 2’ is the perimeter of the boundary. Directions of emergence 

- 4  

Figure 1. Geometry and coordinates for Larmor orbits in convex billiard 
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from a bounce are labelled by the angle 8 measured from the forward tangent to the 
boundary: thus O S  8 s T. Tangential momentum is p 3 cos 8, and is a useful quantity 
because the mapping relating successive bounces on the phase cylinder s , p  is area- 
preserving. The global symmetries of this map are discussed in appendix 2. The 
boundary has radius of curvature p ( s )  and curvature K ( S )  = l / p ( s ) .  

For R > R*, where R* is the radius of the largest circle that can be inscribed in 
the boundary, all orbits bounce repeatedly. For R < R* some orbits can form complete 
circles lying entirely within the boundary. The set of all these circles forms an integrable 
component of the motion for these values of R. R* must lie between the largest and 
smallest radii pmax and pmln of the boundary, because the largest inscribed circle must 
touch the boundary at at least two points (figure 2 ( a ) ) ,  whereas circles with R < pmin 
and R > pmax may touch at most once. (Generically, the largest inscribed circle touches 
the boundary at two points (figure 2 ( a ) )  or three points (figure 2(6)).) 

i C I 1  i b l  

Figure 2. ( a )  Largest inscribed circle R* (touching at two points) and circles touching 
from inside and outside. ( b )  Largest inscribed circle touching at three points. 

To obtain the measure of the integrable component for R < R*, and also to 
understand the other curvature regimes between R = pmin and R = pmax, it is useful to 
introduce the locus of centres of rolled Larmor circles for radius R, which we henceforth 
call the ‘ R  locus’. The different R loci are the involutes of the evolute E of the 
boundary (i.e. its envelope of normals). ( In  an optical analogy, the R loci are the 
successive wavefronts evolving by inwards normal propagation of boundary points, 
and E is the caustic curve of the corresponding rays. In differential geometry, R loci 
are called ‘parallel curves’. As illustrated in figure 3, the curve E is smooth except 
for cusp points on the normals from boundary ‘vertices’ where p ( s )  takes an extreme 
value; in appendix 1 we show that there must be at least two vertices where p is locally 
minimal and two where it is locally maximal, so that E has at least four cusps. ( In  
degenerate cases, cusps corresponding to different vertices may coincide. An extreme 
is when E is a deltoid curve, each of whose three cusps is covered twice as the boundary 
is traversed once : however, the slightest perturbation will recover the generic situation 
in which E has six cusps and is covered once.) 

The R loci are smooth curves for R <pmin and R>pm,, .  Otherwise, the R loci 
have cusps where they meet E at right angles (figure 3). These cusps divide each R 
locus into a series of segments corresponding to boundary regions where alternately 
p ( s )  < R and p ( s )  > R. The endpoints of these segments correspond to osculation 
points on the boundary, for which p ( s )  = R. 

To see the significance of the alternating segments of the R locus, consider an orbit 
starting out from s with p = - 1  ( 8  = T). If R > p ( s )  (figure 4), this is part of a circle 
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x 
\ Boundary 

\ I R L o c u s  

Figure 3. The boundary and its evolute E, together with an R locus for R > R* (no complete 
Larmor circles). The bold lines correspond to flyaway intervals p ( s )  > R, and the filled 
circles are the osculation points where p ( s )  = R. 

Boundary 

Figure 4. Three grazing orbits with p = -1 at s: 1, R > p ( s ) ;  2, R < p ( s ) ,  giving flyaway; 
3, R < p ( s )  giving return to s. 

touching the boundary from outside, and the orbit consists of small bounces grazing 
the boundary, with s decreasing at each bounce. If R < p ( s ) ,  however, the circle 
touches the boundary from inside, corresponding to a glancing collision. There are 
then two possibilities: the grazing circle may be part of a complete circle which therefore 
returns near s, so that the orbit again consists of small bounces, with s now increasing 
at each bounce; or the grazing circle may next intersect the boundary at a point far 
from s. We call the latter case flyaway, and the corresponding boundary segments 
flyaway intervals. Flyaway occurs wherever there are osculation points, i.e. for pmin < 
R < pmax; it corresponds to the non-existence of an invariant curve with p = -1, and 
hence to a chaotic region associated with these glancing orbits. For field-free billiards 
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( R  = CO),  osculation points can occur only if the curvature vanishes somewhere (e.g. 
at an inflection of a non-convex boundary). In this case the non-existence of invariant 
curves with p = - 1 has been rigorously proved by Mather (1982) and is illustrated by 
the heart-shaped billiard of Robnik (1983). 

Because we are considering only clockwise-gyrating particles, the grazing orbits 
with p = +1 never display flyaway, so that p = +1 is always an invariant curve and the 
nearby orbits are locally integrable (as shown by Lazutkin (1973) for field-free smooth 
convex billiards). 

When R* < R < pmax, the flyaway intervals are the boundary segments with p ( s )  > R, 
illustrated in figure 3. When pmin < R < R* some sections of these segments are not 
flyaway intervals because they correspond to complete R circles. In these cases the 
R locus has self-intersections (figure 5 ) ,  and each flyaway interval corresponds to a 
section of the R locus between a cusp and a self-intersection, 

Figure 5. Part of R locus for pmln < R < R*, showing flyaway intervals (bold) and zone 
of complete circles (shaded). 

Flyaway implies lines of discontinuity in the bounce map on the s, p phase cylinder. 
The lines are the pre-images (figure 6) of the flyaway s intervals with p = -1. If A and 
B are two nearby points separated by a discontinuity line, their iterates @(A) and @( B) 
may be far apart. Nevertheless, the next iterate of one of the points, Q2(B), say, may 
lie close to @(A), so that the trajectories in the phase cylinder do lie arbitrarily close 
together as A +  B except that the orbit of B, say, contains extra steps. 

Returning now to the complete circles within the boundary when R < R*, we see 
that the measure of this integrable component of the motion is proportional to the 
area inside the R locus. If R < pmin the R locus is a smooth curve, but if pmin < R < R* 
the R locus has cusps and the area inside it has corners at the self-intersections, with 
interior angles (figure 5 )  given by 

a = r- rS* ~ ( s )  ds 
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i o )  

P I  I 
Oiscont inui ty 

Flyaway 

l b )  

Figure 6.  ( a )  Lines of discontinuity of the bounce map on the phase cylinder, emanating 
from flyaway intervals. ( b )  Trajectories A and B on different sides of a glancing circle G. 

where s1 and s2 are non-osculatory endpoints of the two flyaway intervals associated 
with the corner. 

To summarise this section we predict the following behaviour as the field increases 
and R decreases from infinity (figure 7 ) .  If pmax< R < w  (figure 7(6)),  motion is 
qualitatively similar to the field-free case ; in particular there are invariant curves near 
p = -1, with bounce points rotating slowly clockwise (decreasing s)  round the boun- 
dary. For pmin< R < pmai (figures 7 ( c ) ( d ) ( e ) ) ,  flyaway implies chaotic motion near 

Figure 7. ( a )  Radius-of-curvature function p ( r ) ;  ( b ) - ( f )  boundary, evolute ( E )  and R 
loci for R values in ( a ) ,  with flyaway intervals shown bold and zones of complete Larmor 
circles shaded. 
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p = -1. Within the flyaway range, at R = R* (figure 7 ( d ) ) ,  complete Larmor circles 
appear and the measure of this integrable component increases as R decreases. For 
R < pmin (figure 7 ( f ) )  there are again invariant curves near p = -1  but now bounce 
points rotate slowly anticlockwise. One can say that the chaos for pmin < R < pmax 
enables the ‘turning of the tide’ from clockwise to anticlockwise at  p = -1. 

3. Diametral closed orbits 

Away from the boundaries p = * 1, the phase cylinder s, p will be dominated by the 
fixed points associated with the simplest closed orbits ; stable fixed points are surroun- 
ded by invariant curves, and  unstable fixed points generically lie in a chaotic area. If 
the magnetic field is not too large ( R  not too small) these simplest orbits will consist 
of two arcs bouncing between the ends s1 and s2 of diameters (figure 8), which are 

Figure 8. Diametral closed orbit. 

defined as chords whose ends both meet the boundary at right angles. If l(sl, s2) is 
the length of this diameter, it follows from elementary geometry (figure 8) that the 
fixed points corresponding to the closed orbit lie at 

s = s,, s = s2 and p = C O S  e l  = C O S  e2 = - I ( s ~ ,  s , ) / ~ R .  ( 2 )  
As R decreases from infinity, the orbit based on a given diameter must eventually 

cease to exist. It certainly cannot exist when R is smaller than l(sl,  s,)/2, and it may 
cease to exist for larger R as a result of hitting the boundary between s1 and s2. 

Every boundary has at least two diameters and  hence at  least two diametral orbits 
for large enough R. To see this it is necessary to make use of the fact that diameters 
are critical points of the arc length function, i.e. s1 and s2 satisfy 

Now 1 has the following obvious properties: 

1(s ,  + m 2 ,  s,+ n 2 )  = l ( s , ,  s2) for all integers m and n 

) ( S I ,  s2) = SI)  

l ( s ,  s) = o  
1 ( s , ,  s2) > 0 if s1 # s2. 

(4) 
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Figure 9. The plane s,, s2 of the chord length function I, with identifications generated by 
(4) illustrated by dots and crosses and implying that the fundamental domain of / is a 
Mobius strip (shaded). 

It follows that the domain of l(sl, s2) is a Mobius strip (figure 9 ) ,  on whose edge, 
s1 = s 2 ,  1 vanishes. Within the strip 1 is positive and moreover has no minima ( a  
diameter of a convex boundary can always be made smaller by parallel displacement, 
i.e. as, = -Ssz). Therefore the only critical points can be maxima or saddles, and the 
index theorem guarantees that every function on this Mobius strip has at least one of 
each, corresponding to at least two diameters. 

The stability of the diametral orbits is described by the matrix M giving the state 
after two bounces of an orbit that starts out infinitesimally displaced from one of the 
fixed points ( 2 ) .  This is the product of the deviation matrices for individual bounces, 
i.e. 

A substantial simplification results from the fact that each deviated arc is associated 
with a deviated chord whose length 1 differs only quadratically from that ofthe diameter, 
whereas M relates linear deviations of points on the phase cylinder. Therefore the 
stability matrix for a diametral orbit is independent ofthe magneticjeld, and elementary 
calculations (e.g. in Robnik ( 1 9 8 3 ) )  give 

( 6 )  ) 1 - ~ / ( K I + K ~ ) + ~ / ~ K ~ K >  

2 ( 1 K ,  - 1 ) ( K 1  -t K 2 -  l K 1 K 2 )  

21( 1 - l K 2 )  

1 - 2 1 ( K , +  K 2 ) + 2 1 2 K l K 2  
M = (  

where 1s /(sl,  sz), K ]  = K ( s ~ )  and K 2 =  K ( S ~ ) .  Of course, det M = 1. 

stable, or they are both real, in which case the orbit is unstable. Thus 
The eigenvalues of M either both lie on the unit circle, in which case the orbit is 
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S U S U 

Figure 10. Stable (S) and unstable (U) regimes of chord length and curvature for diametral 
closed orbits. 

It follows that the orbit is unstable if I >  p ( s l ) + p ( s 2 )  or if 1 lies between p(sl) and 
p ( s 2 ) ,  and stable otherwise, as illustrated in figure 10. 

In terms of the topography of the function l(sl, s 2 )  on its Mobius strip, maxima 
correspond to unstable orbits with 1 > p (  sl) + p (  s2 ) ,  and saddles correspond to unstable 
orbits with 1 between p(sl) and p ( s z )  (if contours issue into all four quadrants of sl ,  s2) 
or to stable orbits (if contours issue into only two quadrants). Therefore it does not 
follow from the necessary existence of at least one maximum and one saddle that one 
diametral closed orbit is stable, and indeed it is not hard to construct convex boundaries 
with two diameters which are both unstable (at least one of these diameters must have 
P ( S )  # P ( S 2 ) ) .  

4. Adiabatic skipping 

There are certain regimes of R and p ,  illustrated in figure 11, for which the arc length 
interval As between successive bounces can be expected to be always much less than 
the local radius of curvature p ( s ) .  For these short skips along the boundary it is natural 
to consider the curvature as changing adiabatically, and seek a corresponding conserved 
function C ( s ,  p )  whose contours are invariant curves of the bounce map, implying 
local integrability in the sense of Kolmogorov, Arnold and Moser. 

To determine the adiabatic invariant C( s, p ) ,  we need to calculate A s  = s2 - s1 and 
A 6  = O2 - at the ends of an arc, to lowest order. Referring to figure 12 we have the 

Figure 11. Adiabatic regimes of short skips along the boundary: A, R<< p,,,, p arbitrary; 
B, p,,, < R < pmax, p near + I  ; C, R >> pmai, p near * I .  
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Figure 12. Geometry and notation for calculating adiabatic invariant. 

following formulae for the direction $* of the chord connecting 1 and  2: 

$* = + el - ff = $2-  8,+ a. 

Thus 

A8 = $1 + $2-2$*. 

The tangent directions $ are related to the curvature by 

$ ( S ) = $ * + I : * d S ' K ( S ' )  

and the endpoints are related by the condition that the perpendicular distance from 
chord to boundary is zero, i.e. 

s 2  [ dss in($*-$)=O.  
J S I  

So far all formulae are exact. Now we make a linear approximation for the 
curvature: 

K ( S )  = K ~ +  K , ( S  - s* ) .  (12) 
Substituting this in (10) and  then (1 1) and ( 9 ) ,  retaining lowest-order terms gives, after 
elementary calculations, 

A8 -- ~ , ( A s ) ~ / 6 .  (13)  

Next we use (8) again, in the form 

But 
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so that 

K ~ A S  = el + O2 - 2 sin-’(As/2R). (16) 

It now follows from the smallness of K ~ A S  that 

where we now write K for the local curvature K~ and 0 for the local orbit direction 
( 4  + @2)/2. 

From (13 )  we now have, on taking the limit As-0, 

d e  - K ~ A S  - dK R(1-p2)1’2 
d s  6 d s  3 ( 1 + ~ X p )  

so that 
d e  dK -R(1 -p2)  -- dP --sin e- (-) = 

dK d s  d s  3( 1 + K R ~ ) ’  

This is a linear equation for dK/dp which can be solved exactly to give the adiabatic 
invariant as 

R K  ( S )  +p(3 -2p2) RK ( S )  +cot3 e + 3  cot e. -- - 
( 1 - p2)3/2 sin3 e C(S, P) = 

We can expect the contours of this function to correspond to actual invariant curves 
of the bounce map whenever there are short skips, i.e. wherever (cf. (17)) 

KR(1 -p2)1/2 
1 + KRP 

This condition will hold for the three regimes in figure 1 1  which we now discuss 
individually. 

In the strong-jeld limit KR + 0 (regime A), (20) gives, for the invariant curve passing 
through so, Po, 

and this formula holds for arbitrary p. 
In the forward-glancing limit p + 1 (regime B), (20) gives 

R K ( S ) +  1 
2312 C( s, p )  + 

( 1  - p‘)3/2 

for arbitrary R. 

as 
In the weak-jield glancing limit KR +.CO, p = + * 1  (regime C), (20) gives the constant 

This is the invariant associated with the caustics close to the boundary, whose existence 
was proved by Luzutkin (1973). Geometrically, it means that the difference between 
the arc length As and the chord length 1 is conserved when both are small. 
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The validity condition (21) is strongly violated at osculation points ( K ( s ) R  = 1)  for 
backward glancing orbits ( p  = -1). and this is consistent with our arguments in (i 2 
that because of flyaway such orbits are highly unstable and  correspond to chaotic areas 
where the phase cylinder has no invariant curves. 

It is interesting to ignore the validity condition and study the global structure of 
the invariant curves that (20) predicts. This is best understood in terms of the critical 
points of C(s, p ) ,  which correspond to fixed points in the adiabatic approximation. 
By differentiation, these lie at s, p where 

P 

U s 

bl 

Figure 13. Bounce maps (left-hand pictures) and  adiabatic invariant curves based on the 
approximation (20)  (right-hand pictures) for magnetic billiards in an  ellipse with semi-major 
axis a = 1 and  semi-minor axis b =:, for Larmor radius R with the following values: ( a )  
R = m ( i n t e g r a b l e c a s e ) ; ( b )  R = 3 : ( c )  R = 0 . 7 5 ; ( d )  R = 0 . 4 3 5 ; ( e )  R = 0 . 2 .  (Thelabel l ing 
of axes in ( b ) - ( e )  is the same as  in ( a ) . )  
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Figure 13. 
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and therefore correspond to vertices of the boundary. Maxima of p give minima of 
C(s, p )  (stable adiabatic fixed points), and minima of p give saddles of C(s, p )  (unstable 
adiabatic fixed points). There are no maxima of C(s, p ) .  

If R < pmln there are no critical points with IpI < 1, and the adiabatic invariant 
curves are all loops around the phase cylinder, corresponding to orbits skipping 
anticlockwise for all p .  If R > p , , ,  the phase cylinder has adiabatic fixed points in 
stable and unstable pairs (because the associated maximal and  minimal vertices come 
in pairs as shown in appendix 1). These fixed points are adiabatic approximations 
to the true fixed points and by comparison with § 3  we see that they correspond to 
replacing the ends of diameters by vertices and  (cf (2) and (25)) chord half-lengths 
by radii of curvature. Of course this represents the adiabatic approximation’s attempt 
to describe the phase cylinder far outside its domain of validity, and  any accurate 
prediction of the positions of the fixed points must be regarded as fortuitous. 

We remark that higher-order adiabatic approximations can be constructed near 
periodic points provided the rotation number is small, again by replacing differences 
by differentials but this time in a power of the map rather than the map itself. These 
approximations have the advantage that they extend beyond the linear regime of the 
elementary stability analysis. 

5. Example: the ellipse 

For an elliptic boundary with semi-major axis a and semi-minor axis b the eccentricity 
is ( 1  --b21a2)”’ and the important radii of # 2 are 

There are four vertices, for which, because of symmetry, p ( s )  has two equal minima 
(at s = 0 and s = 2 1 2 ,  say) and two equal maxima (at s = 914 and s = 3214) .  These 
vertices are also the endpoints of diameters. The long diametral orbit ( I  = 2 a )  is always 
unstable; the short diametral orbit is stable unless b = a / J 2 ,  when it is marginally 
stable (because the left-hand unstable interval in figure 10 degenerates to a point for 
equal endpoint curvatures). 

In zero field the ellipse billiard is integrable (see, for example, Berry 1981) with 
the product of angular momenta about the foci being conserved. It is remarkable that 
this conserved quantity is given exactly by the adiabatic approximation in the limit 
R --$a (equation (24)). 

In the following computations of orbits of the bounce map, we used Newton’s 
method to find intersections of the Larmor circle with the ellipse. 

The curvature regimes are illustrated in figure 13 which shows bounce maps for 
the ellipse with a = 1, b = $, and thus pmln = &, pmax = :, R* = $. In the integrable case 
R =CO (figure 13(a) ) ,  the phase cylinder is covered with invariant curves, surrounding 
it near p = +1 (iterates circulating anticlockwise) and near p = -1 (iterates circulating 
clockwise) and surrounding the two stable fixed points at s = 2 / 4  and  3214 ,  p = 0. 
The separatrix passes through the unstable fixed points at s = 0, 3 1 2 ,  p = 0. 

In the weak magnetic field corresponding to R = 3 (i.e. R > p,,,), the bounce map 
(figure 13(b),  left) shows that invariant curves survive near p = k l  as predicted by the 
skipping theory of § 4, and  are accurately represented by the contours (figure 13(b), 
right) of the adiabatic invariant (20). The diametral orbits survive and  correspond to 
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the fixed points ( 2 )  as is usual, the stable one is surrounded by invariant curves and 
the unstable one is embedded in a chaotic area. 

brings the system into the flyaway regime 
of 0 2 ,  and the bounce map (figure 13(c), left) shows the predicted absence of invariant 
curves near p = - 1 .  The unstable diametral orbit no longer exists. The short diametral 
orbit is on the point of disappearing at p = -1  but it is not visible in the chaotic area 
of the map because its domain of stability has shrunk to zero. Higher-order (four 
bounce) stable and unstable closed orbits organise island chains for small negative p .  
For p near +1 invariant curves persist as expected, and as shown in figure 13( c) (right) 
they are well approximated by the invariant (20). 

For the stronger field corresponding to R = 0.435 (i.e. R < pmiJ the system should 
no longer display flyaway, and there should be invariant curves near p = * l .  The 
bounce map (figure 13(d), left) shows the curves near p = + l  (iterates circulating 

Increasing the field so that R = R* = 

P 

. .  - -  ' Z  I . . . . . 
. . . . . - . . . . . . . .- -1 

~ t _-_ . . . . . .  

0 
5 

Figure 14. ( a )  Ten-fold magnification of figure 13(d)  in p direction near p = - 1 ;  ( b )  
ten-fold magnification of ( a ) ,  showing predicted invariant curves near backward glancing 
orbits ( p = =  - 1 ) .  (The labelling of axes on the right-hand pictures is the same as on the 
left-hand ones.) 
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anticlockwise) very clearly, and  moreover they are accurately described by the adiabatic 
invariant (figure 13(d) ,  right) even down to p = 0. To see the invariant curves near 
p = -1 it is necessary to magnify the bounce map in this region. Two successive ten-fold 
magnifications are shown in figures 14(a)  and  (b )  (left). These reveal a rich structure 
of islands and  chaos, with the predicted invariant curves (also circulating anticlockwise) 
appearing only in the narrow range -1 p -0.997, and  well approximated by the 
adiabatic invariant (figure 14( b ) ,  right). 

Finally, the very strong field with R = 0.2 shows a phase plane (figure 13( e), left) 
covered with invariant curves, corresponding to adiabatic skipping for all p .  These 
curves are indistinguishable from those in figure 13(e) (right), generated from the 
invariant (20). 

The general picture supported by these computations is that increasing field induces 
flyaway chaos near p = -1 when pmin < R < pmaxr with this chaos being squeezed out 
of existence by invariant curves from above ( p  = +1) and below ( p  = -1) as the field 
increases further so that R < pmln. We emphasise the point made in the introduction, 
that this picture holds only for sufficiently smooth boundaries, and  does not apply for 
example to magnetic billiards in rectangles or  stadiums. 
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Appendix 1. Every billiard has at least four curvature extrema 

( A  referee has pointed out that this is the 'four-vertex theorem' (Stoker 19691, and that 
an  argument similar to that which follows has been given by Guckenheimer (1977).) 

Referring to figure 1, let $ be the direction between the clockwise tangent and  the 
x axis. Then the radius of curvature p ( $ )  is a periodic function of $ and so can be 
written 

X 

p ( $ )  = Pk cos(k*+ uk). 
k = O  

In terms of p ( + )  the x and y coordinates of boundary points are 
S ( * )  

x ( 4 )  -x(O) = 

A$) 

cos $ d s  = Io' d$(ds ld$)  cos $ = lo* d $ p ( 4 )  cos $ 

(A21 
= jo' d$  P ( $ )  sin $. 

The boundary is a closed curve, so x(27r) - x(0) = y(2.rr) -y (O)  = 0, and substituting 
the Fourier series ( A l )  immediately gives p,  = 0. Curvature extrema satisfy 

This is a periodic function and  so generically has a n  even number of extrema (alternately 
maxima and  minima) on the range OS I,!I < 27r. To show that this number is at  least 
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four we assume the contrary, that there are only two. Then we can construct a function 

g(cL)=go+g ,  cos(cL+u,) (A41 

whose zeros coincide with those of dp/dJ,  and which can therefore always have the 
same signs as dp/d+. Therefore we would have 

But direct substitution of (A3) and (A4) shows that this integral is identically zero and 
so we have generated a contradiction. Therefore p has at least four extrema. 

Appendix 2. Fundamental discrete symmetries of the bounce map 

Symmetries of a Hamiltonian H are important in understanding the organisation of 
classical phase space and particularly in finding periodic orbits. Continuous symmetries 
are related to additional integrals of motion and will not be discussed here. We shall 
consider discrete symmetries related to the following three operations in four- 
dimensional phase space (assuming a system with two freedoms such as a magnetic 
planar billiard): 

Inversion P :  
Time reversal T :  
Reflection S,: 

( x ,  Y, P,, P,) -+ ( - 4  -Y, - P x .  -Pj) 

( x ,  y ,  px ,  p , )  -+ ( x ,  y ,  -px,  - p , )  
( x ,  Y ,  px ,  p y )  -+ ( - x ,  Y, -pX, p , ) .  

These maps of phase space onto itself satisfy P 2  = T 2  = S: = I where I is the identity. 
For any symmetry U such that U’= I ,  we will say that H has the symmetry U if HU = H. 

For a charged particle in a uniform constant magnetic field B and a scalar potential 
V ( x ,  y )  (hard-walled in the case of billiards), there is a gauge in which 

H = p : +  ( p y  - Bx)2+ V ( x ,  y ) .  

It follows at once that 
(i) H has P if V has P ;  
(ii) H has T if B=O; 
(i i i)  H has S, if B = 0 and V has S , ;  
(iv) H has TS, if B # 0 and V has S,. 
In our case (billiards), V ( x , y )  has the symmetry of the boundary curve, and the 

preceding assertions (i)-(iv) can be phrased in terms of the two-dimensional phase 
cylinder s, p of the bounce map, as follows. 

( i )  If the boundary has P, then corresponding to the orbit through ( s , p )  is a 
geometrically similar one through ( s  + 9 1 2 ,  p ) ,  i.e. the structure of the phase cylinder 
has period 9 1 2  rather than 9. 

(ii) If B = 0, the phase cylinder has reflection symmetry about the (mirror) line p = 0. 
(i i i)  If the boundary has S, and B = 0, and if the arc length origin s = 0 is chosen 

on the symmetry line at the boundary, then corresponding to the orbit through ( s , p )  
is a geometrically similar one through (-s, - p ) ,  i.e. the bounce map has inversion 
symmetry as well as the T symmetry resulting from B = 0. 

(iv) If the boundary has S, and B Z O ,  then (with the same s origin as in (iii)) 
corresponding to the orbit through (s, p )  is a geometrically similar one through (-s, p ) ,  
i.e. the bounce map has reflection symmetry about the (mirror) line s = 0. 
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One sees that (ii) and (iv) are geometrically equivalent in the sense that phase 
space has a mirror symmetry (although of course the cylinder topology prevents this 
equivalence from being complete for the bounce map). An important quantum 
mechanical consequence of this type of equivalence, which we will discuss further in 
another paper, is that the energy levels of a Hamiltonian operator without T but with 
TS, may, in their statistical properties, mimic those of an  operator with T-a sort of 
‘false time reversal symmetry’. 
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